TruncatedSVD
API reference for TruncatedSVD
Decomposition.TruncatedSVD
Dimensionality reduction using truncated Singular Value Decomposition of the data. Unlike PCA, the input data is not centered before decomposition.
Algorithm
The algorithm performs power iteration on the uncentered covariance matrix and keeps the top components corresponding to the largest singular values.
constructor(nComponents: number = 2)
Parameters
nComponents
(number, default2
): number of singular vectors to retain.
Methods
fit(X: number[][]): void
transform(X: number[][]): number[][]
fitTransform(X: number[][]): number[][]
inverseTransform(X: number[][]): number[][]
getComponents(): number[][]
getSingularValues(): number[]
getExplainedVariance(): number[]
getExplainedVarianceRatio(): number[]
Example
const svd = new TruncatedSVD(2);
svd.fit(X);
const T = svd.transform(X_test);