PCA
API reference for PCA
Decomposition.PCA
Linear dimensionality reduction using Singular Value Decomposition of the data to project it to a lower dimensional space. The input data is centered but not scaled for each feature before applying the SVD.
Algorithm
The covariance matrix of the centered samples is decomposed by power iteration. The resulting eigenvectors form the principal components sorted by explained variance.
constructor(nComponents: number | null = null)
Parameters
nComponents
(number | null, defaultnull
): number of principal components to retain. Ifnull
, all components are used.
Methods
fit(X: number[][]): void
transform(X: number[][]): number[][]
fitTransform(X: number[][]): number[][]
inverseTransform(X: number[][]): number[][]
getComponents(): number[][]
getMean(): number[]
getExplainedVariance(): number[]
Example
const pca = new PCA(2);
pca.fit(X);
const T = pca.transform(X_test);