SparsePCA
API reference for SparsePCA
Decomposition.SparsePCA
Sparse Principal Components Analysis using truncated power iteration with soft thresholding. The algorithm stops when the updates change by less than tol or when maxIter is reached.
Algorithm
Each component is extracted by iterative thresholding of the covariance matrix. The process encourages sparsity by shrinking small coefficients towards zero.
interface SparsePCAProps {
nComponents?: number | null;
alpha?: number;
maxIter?: number;
tol?: number;
}
constructor(props: SparsePCAProps = {})Parameters
nComponents(number | null, defaultnull): number of sparse components to compute.nullkeeps all components.alpha(number, default1): sparsity controlling parameter. Higher values lead to more zero coefficients.maxIter(number, default100): maximum number of iterations for each component.tol(number, default1e-8): stopping criterion for convergence of the iterative updates.
Example
const transformer = new SparsePCA({ nComponents: 5, alpha: 0.1 });
transformer.fit(X);
const T = transformer.transform(X_test);