CategoricalNB
API reference for CategoricalNB
Bayes.CategoricalNB
Naive Bayes classifier for features with a finite number of discrete categories. It counts how often each feature value appears in each class and uses additive smoothing to estimate the conditional probabilities.
interface CategoricalNBProps {
alpha?: number;
forceAlpha?: boolean;
fitPrior?: boolean;
classPrior?: number[] | null;
minCategories?: number | number[] | null;
}
constructor(props: CategoricalNBProps = {})Parameters
alpha— Smoothing parameter used when computing category probabilities. Larger values make the model less sensitive to missing observations.forceAlpha— Iftrue, ensures thatalphais strictly positive even when a small value is provided.fitPrior— Whether to learn class prior probabilities from data. Whenfalse, class priors are assumed to be uniform.classPrior— Optional array of prior probabilities for each class. Overrides the data-derived priors when provided.minCategories— Minimum number of categories assumed for each feature. Can be a single number or an array specifying the value per feature.
Example
const clf = new CategoricalNB();
clf.fit(trainX, trainY);
const result = clf.predict(testX);