BernoulliNB
API reference for BernoulliNB
Bayes.BernoulliNB
Bernoulli Naive Bayes classifier for binary or boolean features. Continuous
features can be converted to binary values using the binarize
threshold.
Class and feature probabilities are estimated with additive smoothing.
interface BernoulliNBProps {
alpha?: number;
binarize?: number | null;
fitPrior?: boolean;
classPrior?: number[] | null;
}
constructor(props: BernoulliNBProps = {})
Parameters
alpha
— Additive smoothing parameter applied when estimating probabilities. Defaults to1.0
.binarize
— Threshold for binarizing input features. Ifnull
, the input is assumed to already be binary.fitPrior
— Whether to learn class prior probabilities from the training data. Whenfalse
, a uniform prior is used.classPrior
— Optional array of prior probabilities for each class. If provided, these values override the learned priors.
Example
const clf = new BernoulliNB();
clf.fit(trainX, trainY);
const result = clf.predict(testX);