MDS
API reference for MDS
Manifold.MDS
Multidimensional scaling using classical MDS algorithm.
Classical MDS converts a distance matrix into a centered similarity matrix and computes its dominant eigenvectors to recover coordinates that preserve the original pairwise dissimilarities.
interface MDSOptions {
nComponents?: number;
dissimilarity?: 'euclidean' | 'precomputed';
}
constructor(options: MDSOptions = {})
Options
nComponents
(number, default2
): dimension of the embedded space.dissimilarity
('euclidean'
|'precomputed'
, default'euclidean'
): if'precomputed'
, the input tofitTransform
should be a distance matrix.
fitTransform(data: number[][]): number[][]
computes the embedding and returns it.
getEmbedding(): number[][]
returns the computed embedding.