@kanaries/ml

AdaBoostClassifier

API reference for AdaBoostClassifier

Ensemble.AdaBoostClassifier

interface AdaBoostClassifierProps {
    nEstimators?: number;
    learningRate?: number;
    randomState?: number;
}
constructor(props: AdaBoostClassifierProps = {})

Parameters

nametypedefaultdescription
nEstimatorsnumber50Number of boosting iterations
learningRatenumber1.0Weight applied to each stump
randomStatenumberundefinedSeed for reproducibility

Algorithm

AdaBoostClassifier trains decision stumps sequentially and reweights samples so that misclassified points receive more focus in subsequent rounds.

Methods

  • fit(trainX: number[][], trainY: number[]): void
  • predict(testX: number[][]): number[]
  • predictProba(testX: number[][]): number[][]
  • getFeatureImportances(): number[]

Example

const clf = new AdaBoostClassifier();
clf.fit(trainX, trainY);
const result = clf.predict(testX);