AdaBoostClassifier
API reference for AdaBoostClassifier
Ensemble.AdaBoostClassifier
interface AdaBoostClassifierProps {
nEstimators?: number;
learningRate?: number;
randomState?: number;
}
constructor(props: AdaBoostClassifierProps = {})Parameters
| name | type | default | description |
|---|---|---|---|
| nEstimators | number | 50 | Number of boosting iterations |
| learningRate | number | 1.0 | Weight applied to each stump |
| randomState | number | undefined | Seed for reproducibility |
Algorithm
AdaBoostClassifier trains decision stumps sequentially and reweights samples so that misclassified points receive more focus in subsequent rounds.
Methods
fit(trainX: number[][], trainY: number[]): voidpredict(testX: number[][]): number[]predictProba(testX: number[][]): number[][]getFeatureImportances(): number[]
Example
const clf = new AdaBoostClassifier();
clf.fit(trainX, trainY);
const result = clf.predict(testX);