@kanaries/ml

K-Means Clustering (KMeans) – @kanaries/ml Algorithm Guide

Learn how to apply the K-Means clustering algorithm with @kanaries/ml, including parameter definitions, TypeScript API usage, and examples for segmenting datasets in modern web apps.

K-Means Clustering (Clusters.KMeans)

K-Means clustering partitions datasets into a chosen number of groups by minimizing within-cluster variance. Use the Clusters.KMeans implementation in @kanaries/ml to build fast, client-side segmentation pipelines for browser or Node.js applications.

constructor (n_clusters: number = 2, opt_ratio: number = 0.05, initCenters?: number[][], max_iter: number = 30)
props nametypedefault value
n_clustersnumber2
opt_rationumber0.05
initCentersnumber[][]undefined
max_iternumber30
const X = [
    [0, 0],
    [0.5, 0],
    [0.5, 1],
    [1, 1],
];
const sampleWeights = [3, 1, 1, 3];
const initCenters = [[0, 0], [1, 1]];

const kmeans = new KMeans(2, 0.05, initCenters);

const result = kmeans.fitPredict(X, sampleWeights);